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ABSTRACT

With 214 source vocabularies, the construction and maintenance
process of the UMLS (Unified Medical Language System) Metathe-
saurus terminology integration system is costly, time-consuming,
and error-prone as it primarily relies on (1) lexical and semantic
processing for suggesting groupings of synonymous terms, and
(2) the expertise of UMLS editors for curating these synonymy
predictions. This paper aims to improve the UMLS Metathesaurus
construction process by developing a novel supervised learning
approach for improving the task of suggesting synonymous pairs
that can scale to the size and diversity of the UMLS source vocab-
ularies. We evaluate this deep learning (DL) approach against a
rule-based approach (RBA) that approximates the current UMLS
Metathesaurus construction process. The key to the generalizability
of our approach is the use of various degrees of lexical similarity in
negative pairs during the training process.

Our initial experiments demonstrate the strong performance
across multiple datasets of our DL approach in terms of recall (91-
92%), precision (88-99%), and F1 score (89-95%). Our DL approach
largely outperforms the RBA method in recall (+23%), precision
(+2.4%), and F1 score (+14.1%). This novel approach has great poten-
tial for improving the UMLS Metathesaurus construction process
by providing better synonymy suggestions to the UMLS editors.
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1 INTRODUCTION

Motivation. Developed by the National Library of Medicine, the
UMLS (Unified Medical Language System) Metathesaurus [4] is a
terminology integration system constructed by integrating biomed-
ical terms from over 200 source vocabularies and organizing them
into concepts consisting of clusters of synonymous terms from the
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source vocabularies. The basic building block of the Metathesaurus,
also known as an “atom,” is a term from a source vocabulary.

In practice, synonymous atoms are assigned the same concept
unique identifier (CUI). Such concepts can be thought of as equiva-
lent mappings from an ontology alignment perspective. In fact, a
subset of three source vocabularies from the Metathesaurus (NCI,
FMA, and SNOMED CT) have been used by the Ontology Align-
ment Evaluation Initiative (OAEI) since 2011 [2] and in related
efforts [18, 21]. The OAEI aims to compare ontology matching sys-
tems on defined test cases. The OAEI organizers have used UMLS
synonymy information from the Metathesaurus concepts as refer-
ence mappings for biomedical ontologies integrated in the UMLS.
Although the Metathesaurus construction process may have sim-
ilarities to ontology alignment, not all source vocabularies in the
Metathesaurus are well-defined ontologies formally represented
in OWL. Therefore, in order to avoid any misunderstanding espe-
cially in the context of the Semantic Web, we will continue to use
the term vocabulary instead of ontology when referring to source
vocabularies in the Metathesaurus.

The Metathesaurus construction process is based on the assump-
tion that specially trained human experts can determine synonymy
among atoms with high accuracy from the candidates obtained from
a lexical similarity model and semantic pre-processing. However,
manual curation is error-prone as pointed out by [7, 8, 19, 30, 31].
Given the current size of the Metathesaurus with 15.5 million atoms
from 214 source vocabularies grouped into 4.28 million concepts,
its maintenance process is costly, time-consuming, and extremely
demanding on the human expert editors. On the other hand, with
the enormous knowledge accumulated over 30 years of manual
curation, the existing Metathesaurus provides ample material for
supervised learning.

Supervised learning approaches with word embeddings have
shown promising results in previous Metathesaurus-related exper-
iments confirming that they have reasonably good performance
for the alignment of a selected subset of source vocabularies in
the Metathesaurus [21, 45, 47, 48]. In this work, we propose to use
these techniques to predict synonymy from all source vocabularies
in the Metathesaurus. Aligning over 214 vocabularies with their
large size and vast diversity introduces new challenges compared
to the OAEI task of aligning a few vocabularies.

In this work, we are mostly interested in assessing the feasibility
of using deep learning (DL) techniques for terminology integration
at scale in the UMLS Metathesaurus. Therefore, this investigation is
not primarily technical and does not have the usual features of a DL
benchmarking study. Instead, we investigate whether a simple DL
approach can outperform the editorial rules established for building
the UMLS Metathesaurus.


https://doi.org/10.1145/3442381.3450128
https://doi.org/10.1145/3442381.3450128

WWW °21, April 19-23, 2021, Ljubljana, Slovenia

Objectives. Our primary objective is to develop a scalable su-
pervised learning approach to improve synonymy predictions com-
pared to the current lexical and semantic processing in the Metathe-
saurus. While existing ontology alignment approaches [2, 18, 21, 47]
have been successful on small subsets of 3 to 8 source vocabular-
ies, our goal is to develop an approach that scales not only to
large numbers of source vocabularies, but also to diverse source
vocabularies, such as those in the Metathesaurus. We expect such a
supervised learning approach to outperform a rule-based approach
(RBA) that approximates the lexical and semantic processing used
in the current Metathesaurus construction process. We will explain
the rule-based approximation in Section 3.2.

Our secondary objective is to investigate the extent to which
lexical similarity between the atoms used for training influences
the performance of our algorithm. Intuitively, it seems more diffi-
cult to predict the absence of synonymy between lexically-similar
atoms than between lexically-different atoms. We hypothesize that
learning from pairs with different degrees of lexical similarity will
help improve the performance and generalization of the algorithm.

Contribution. Our contributions include:

o The first attempt to define and address terminology integra-
tion at the full scale and diversity of the UMLS Metathesaurus
using a learning-based approach.

o A reusable rule-based baseline approximating the current
lexical and semantic processing used in the UMLS for com-
paring the performance of our algorithm against the current
UMLS building process.

o A generalizable supervised learning approach that is shown
to largely outperform the current lexical and semantic pro-
cessing used in the UMLS Metathesaurus construction pro-
cess.

o A confirmed hypothesis that the variety of degrees of lexical
similarity in negative pairs from the training set is the key
to the generalizability of the algorithm.

The remainder of the paper is organized as follows. Section 2
provides relevant background knowledge about the Metathesaurus.
Section 3 describes the synonymy prediction and the rule-based ap-
proximation as a proxy to the current Metathesaurus construction
process. Section 4 describes our supervised learning approach. In
section 5, we present our experiments and discuss their results. In
section 6, we discuss related work. Section 7 concludes the paper.

2 BACKGROUND: KNOWLEDGE
REPRESENTATION IN THE UMLS
METATHESAURUS

This section presents background knowledge about the UMLS
Metathesaurus [4] necessary for describing and understanding the
synonymy prediction task, as well as the rule-based approximation
of the Metathesaurus building process. We will use the examples in
Table 1 to illustrate the concept structure in the Metathesaurus.
As mentioned earlier, key to the UMLS Metathesaurus are the
notions of atom (a term from a specific source vocabulary, identified
with a specific source concept identifier) and concept (grouping of
synonymous atoms). While the Metathesaurus preserves source
concept identifiers (SCUI), it also assigns its own identifiers to atoms
(AUI), unique strings (SUI), normalized strings (LUI) and concepts
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(CUI). Table 1 shows examples of atoms and the various types of
identifiers they were assigned. Additionally, the Metathesaurus
editors assign semantic types to each UMLS concept to denote the
broad semantics of each concept. Of note, semantic types are not
assigned to AUIs, but to CUIs instead. However, it is possible to
approximate the semantics of an atom by inferring it from that of
the source vocabulary (for semantically homogeneous vocabularies,
such as anatomy ontologies), or the top-level subdivisions of a
vocabulary (for broad-coverage vocabularies).

Let us consider three tuple pairs (t1, t3), (t4, t5), and (¢1, t5) from
Table 1 with

t; = (“Headache”, “MSH”, “M0009824”, “Disorders”)

t3 = (“Cranial Pains”, “MSH”, “M0009824” , “Disorders”)

t4 = (“Cephalodynia”, “MSH”, “M0009824”, “Disorders”)

t5 = (“Cephalodynia”, “SNOMEDCT_US”, “25064002”, “Disor-
ders”).

In the UMLS Metathesaurus, the information available to the
construction process are input tuples in the form of (str, src, scui,
sg) where str is the original string from the source src, and scui is
the optional identifier of that str string from the source src, and
sg is a semantic group reflecting the semantics of the string in
the source. Of note, for this experiment, we manually assigned one
semantic group to each vocabulary and to the top-level subdivisions
of heterogeneous vocabularies. Each atom inherits its semantic from
its source or from its high-level ancestor(s).

Let T = (SsTRr, SsrCs SscuT, Ssc) be the set of all input tuples
in the Metathesaurus where Sq7R is the set of all strings, Ssgrc is
the set of all sources, Sscy is the set of all source concept unique
identifiers, and Sgg is the set of all semantic groups. The tuples #;
= (“Headache”, “MSH”, “M0009824”, “Disorders”) and t3 = (“Cranial
Pains”, “MSH”, “M0009824”, “Disorders”) are instances of T. Given
the input tuple pairs (str, src, scui, sg) and (str’, src’, scui’, sg’) as
instances of T = (SsTR, SsrC> Sscu T, SsG) from source vocabularies,
the Metathesaurus defines several identifier types for characterizing
atoms during the integration process.

AUI and m, link mapping function. The basic building blocks
or “atoms” from which the Metathesaurus is constructed are the
concept names or strings from each of the source vocabularies.
Every occurrence of a string in each source vocabulary is assigned
a unique atom identifier (AUI). When the same string appears in
multiple source vocabularies, for example, “Cephalodynia” appear-
ing in both MSH and SNOMEDCT_US, they are assigned different
AUIs “A26628141” and “A2957278” as shown in Table 1.

(D1) Let Say 1 be the set of all AUIs in the Metathesaurus. Let
mg be the function that maps concept string str € SgTr from
source vocabulary src € Sgrc to anew AUl a € Sy such that a
= mq(str, src).

SUI and mg. These AUIs are then linked to a unique string
identifier (SUI) to represent occurrences of the same string. Any
lexical variation in character set, upper-lower case, or punctuation
will result in a separate SUL For example, the strings “Headache”
and “Headaches” are linked to two different SUIs.

(D2) Let Ssyy be the set of all SUIs in the Metathesaurus. Let mg
be the function that maps an AUl a € Syyj to a new SULs € Ssyy
such that s = mg(a).

LUI and m;. All the English lexical variants of a given string (de-
tected using the Lexical Variant Generator tool [26]) are associated
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Table 1: Examples of atoms from a Metathesaurus concept, with associated identifiers and semantic group

| Tuple | String | Source | SCUI | AUI | SUI | LUI | CUI | Semantic Group |
| n |  Headache | MSH | M0009824 | A0066000 | S0046854 | L0018681 | C0018681 |  Disorders |
| | Headaches \ MSH | M0009824 | A0066008 | S0046855 | L0018681 | C0018681 |  Disorders |
| 3 | Cranial Pains | MSH | M0009824 | A1641924 | S1680379 | 11406212 | C0018681 |  Disorders |
| t | Cephalodynia | MSH | M0009824 | A26628141 | S0475647 | L0380797 | C0018681 |  Disorders |
| t5 | Cephalodynia | SNOMEDCT_US | 25064002 | A2957278 | S0475647 | L0380797 | C0018681 | ~ Disorders |
|t | Headache (finding) | SNOMEDCT_US | 25064002 | A3487586 | 3345735 | L3063036 | C0018681 |  Disorders |

with a single normalized term (LUI). The LVG tool recognizes that
the two strings “Headache” and “Headaches” only differ by minor
lexical variation and associates them with the same LUI “L0018681”.

(D3) Let Sy be the set of all LUIs in the Metathesaurus. Let m;
be the function that maps a SUIl s € Ssyy to anew LUII € Spyy
such that [ = m(s).

CUL Lexical similarity forms the basis for suggesting synonymy
in the UMLS Metathesaurus. However, all atoms that share the
same LUI are not necessarily synonymous. For example, the string
“nail” can denote both an anatomical structure and a surgical device.
Table 1 illustrates how synonymous terms are clustered into the
same concept (CUI = “C0018681”). Note that we do not define the
link mapping from AUI to CUI here because this link is unavailable
to the task and cannot be used in the prediction function.

SCUI and my,. Each AUL is optionally associated with one identi-

fier provided by its source (SCUI). Several strings including “Headache”,

“Headaches”, “Cranial Pains”, and “Cephalodynia” are associated
with the same SCUIL, “M0009824”, from the source vocabulary MSH.
SCUISs play an important role in the Metathesaurus construction
process because source synonymy is very often conserved in the
Metathesaurus.

(D4) Let Sscyr be the set of all SCUIs in the Metathesaurus. Let
my, be the function that maps a concept string a € Syyy to a new
SCUI u € Sscyr such that u = my(a).

Semantic Group and my. As mentioned earlier, semantic groups
(or semantic types) are assigned to CUIs, not AUIs, by the Metathe-
saurus editors. For this reason, this information is unavailable to
the task and cannot be used in the prediction function. Instead, we
manually assigned semantic groups to source vocabularies or to
their top-level subdivisions. All the atoms from a source vocabu-
lary (or top-level subdivision thereof) inherit the semantic group
of the source (or top-level subdivision). Most of the atoms have
a single semantic group. Semantic group information is used to
determine semantic compatibility among atoms defined as sharing
one semantic group.

(D5) Let Ssi be the set of all semantic groups in the Metathe-
saurus. Let mg be the function that maps concept string a € Say;
to a set of semantic groups g C Ssg such that g = mgy(a).

So far we have defined the constraint mappings for each AUI to
be linked to other identifier types. Every AUI is linked to a single
string STR, a single SCUI (optionally), a single SUIL a single LUI,
and, most often, a single Semantic Group.

Next we will show how these identifiers and mapping links can
be leveraged in the rule-based approximation of the Metathesaurus
construction process to derive synonymy predictions.

3 PROBLEM FORMULATION AND
RULE-BASED APPROXIMATION BASELINE

3.1 Problem Formulation

We define the synonymy prediction task as follows. T is the set of
all input tuples (SsTRr, Ssrc, Sscur, Ssg) from source vocabularies.
Let ¢ = (str, src, scui, sg) € T, and t’ = (str’, src’, scui’, sg’) € T.
Let p: T x T — {0,1} be the prediction function mapping a pair
of input tuples to either 0 or 1. The two strings str from ¢ and str’
from t’ are synonymous if p(t,t”) = 1.

Note that here we consider the whole tuple for the prediction
task instead of using the string str only. A string itself does not carry
sufficient information for the task at hand; we need to know which
source the string comes from and which semantics it has. This
is especially useful for processing homonyms (e.g., depending on
the source, “nail” can denote an anatomical structure or a surgical
device, which will be indicated by the semantic group, “Anatomy”
or “Device”).

As ground truth for the prediction task, we use the groupings of
strings into concepts in the Metathesaurus. If two strings from two
different tuples are assigned the same CUI, they are synonymous.
Otherwise, they are not.

A synonymy prediction task will decide if each of the tuple pairs
is synonymous (or, more precisely, if the atoms in each pair are
synonymous). Finding the prediction function p is the problem we
address in this paper. We will describe the rule-based approach in
Section 3.2 and the supervised learning approach in Section 4.

3.2 Rule-based Approximation of the
Metathesaurus Construction Process

Here we formalize an approach that approximates the current
Metathesaurus construction process that takes as input tuple pairs
from source vocabularies. (We have confirmed with the UMLS
Metathesaurus editors at the National Library of Medicine that this
formalization of the Metathesaurus editorial guidelines accurately
reflects the Metathesaurus construction process.) We use this ap-
proximation as a baseline in the evaluation of our supervised learn-
ing approach. We use the concepts/identifiers and functions/links
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described in Section 2 to show how the identifiers and links can be
combined into rules for synonymy predictions.

We have defined SsTR, Ssre, Sscurs Saur, Ssut, SLui, Scurs
and Ssg to be the set of all strings, sources, SCUIs, AUIs, SUIs,
LUIs, CUIs, and semantic groups in the Metathesaurus, respectively.
We also have the link mapping functions mg, ms, m;, my, and my
defined from (D1), (D2), (D3), (D4), and (D5) above. Next we will
derive the editorial rules from the identifiers and mapping links in
the Metathesaurus.

The rule-based approach reflects the following Metathesaurus
construction principles:

e Synonymy asserted between atoms in a source vocabulary
tends to be conserved in the Metathesaurus

o Lexical similarity is used to identify candidates for synonymy

e Atoms that do not share a common semantics are prevented
from being recognized as synonymous and grouped into the
same concept

These principles are formalized into two rules, “source syn-
onymy” and “lexical similarity and semantic compatibility”. These
rules can be combined into a disjunction and amplified through
transitivity.

To illustrate the rule-based approach, we will evaluate the tuple
pairs (t1, t3), (ts, t5), and (t1, t5) from Table 1 against each rule with

t; = (“Headache”, “MSH”, “M0009824”, “Disorders”),

t3 = (“Cranial Pains”, “MSH”,'M0009824” , “Disorders”),

t4 = (“Cephalodynia”, “MSH”, “M0009824”, “Disorders”),

t5 = (“Cephalodynia”, “SNOMEDCT_US”, “25064002”, “Disor-
ders”).

Source synonymy (SS) rule. The two input tuples are synony-
mous if they have the same identifier in a given source (SCUI).
Formally, given a tuple pair t = (str, src, scui, sg) € T and ¢’ = (str’,
src’, scui’, sg’) € T, let pss be the prediction function for the source
synonymy rule: if scui = scui’ then pss(t, t') = 1.

For the example at hand, pss(t1, 3) = 1, pss(t4, t5) = 0, pss(t1, ts)
= 0. t; and t3 are predicted to be synonymous because they share
the same SCUI “M0009824” from MSH.

Lexical similarity and semantic compatibility (LS_SC) rule.

The two input tuples are synonymous if they have the same lexical
terms and semantic groups derived from the input tuples using the
set of identifiers and links in the Metathesaurus. In practice, given
the input as a pair of tuples, included in the lexical similarity and
semantic compatibility rule are: (1) a set of axioms to derive the
lexical term (lui, lui’) and semantic groups (sg, sg’) for each input
tuple, and (2) the assertions that they have the same lexical term
and a common semantic group. We formalize this rule using the
Metathesaurus notions as follows.

Given a tuple pair t = (str, src, scui, sg) € T and t’ = (str’, src’,
scui’, sg’) € T, let pyqc be the prediction function for the lexical
and semantic similarity rule: pj¢s.(¢,¢) = 1if
(1) aui = mg(str, src), sui = ms(aui), lui = my(sui), sg = my(aui),
(deriving lui and sg)
aui’ = mq(str’, src’), sui’ = mg(aui’), lui’ = my(sui’), sg’ = mg(aui’),
(2) lui = lui’ and sg N sg’ # O (asserting lui and sg).

For the current example, pygsc(t1, 3) = 0, prssc(ta, t5) = 1, prsse(tis
t5) = 0, t4 and t5 are predicted to be synonymous because they share
the same LUI “L0380797” and semantic group “Disorders”.
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Table 2: List of abbreviations used in the paper

‘ Notion Meaning Notion Meaning ‘
SRC Vocabulary source T set of tuples
STR Atom string SsrcC set of SRCs
AUIT Atom unique ID SSTR set of STRs
CUI Concept unique ID Saur set of AUIs
LUI Lexical unique ID Mg SSTR X SsRre

— Saur
SUI String unique ID Ssur set of SUIs
SCUI Source CUI mg SAUI 4 SSUI
SS Source synonym Stur set of LUIs
LS Lexical similarity my Ssur — SLur
SC Semantic compatibility | Sscyy  set of SCUIs
SG Semantic group my SAaur — Sscur
TRANS  Transitivity SsG set of SGs
SIM Similarity mg Saur — Ssg
NOSIM  No similarity Mme Saur — Scur
RAN Random

Rule combination (SS_LS_SC). For the three tuple pairs at
hand, the two pairs (t1, t3) and (¢4, ts) are predicted to be synony-
mous by the source synonymy rule and the lexical and semantic sim-
ilarity rule. The last pair (¢, t5) is predicted to be non-synonymous
by both rules. However, all these pairs share the same CUI and
are considered synonymous in the Metathesaurus (ground truth).
Therefore, the rule-based approach can only correctly predict two
out of the three pairs above.

Since both source synonymy preservation and lexical and seman-
tic similarity are principles used in the Metathesaurus construction
process, it is legitimate to create a disjunction of the corresponding
rules (i.e., SS or LS_SC).

Given a tuple pair t = (str, src, scui, sg) € T and t’ = (str’, src’,
scui’, sg’) € T, let pggssc be the prediction function for the source
synonymy and the lexical and semantic similarity rule: pjssc(t,t)
=1ifp_ss(t, t’) =1orp_Issc(t, t’) = 1.

Transitivity. The combination rule SS_LS_SC can be further
amplified by considering its transitive closure. Given t1,t,13 €
T, let prrans be the prediction function for the transitivity rule:
P = {pss, Pisscs Pssissc> Pirans) is the set of prediction functions,
Ptrans(t1, t3) = 1if I p1, pa € P such that py(t1, t2) = 1 andpz(tg, t3)
=1

Note that all prediction functions in P are commutative. Chang-
ing the order of the parameters does not change the results.

Section 5 will describe our experiments and evaluate this ap-
proach against the supervised learning approach, which will be
provided in Section 4.

4 SUPERVISED LEARNING APPROACH

This section introduces our supervised approach for learning and
predicting synonymy among Metathesaurus atoms. The general
idea is to learn similarities between pairs of atoms within a con-
cept and dissimilarities between pairs of atoms across concepts.
We present the model formulation, dataset generation and neural



Biomedical Vocabulary Alignment at Scale
in the UMLS Metathesaurus

network architecture. Table 2 provides a list of abbreviations used
in the paper for a quick reference.

4.1 Problem Formulation

Supervised deep learning (DL) is a learning function that maps an
input to an output based on examples of input-output pairs through
layers of dense networks [39]. The Metathesaurus comprises ap-
proximately 10 million English atoms, each of which is associated
with a concept. One can simply train a supervised classifier to pre-
dict which concept should be assigned to a given atom. However,
this approach is considered an extreme classification task [3] due
to the very large prediction space of 4.28 million concepts. How-
ever, the concept is simply a “mechanism” to cluster synonymous
atoms together. We are primarily interested in assessing whether
two atoms are synonymous and should be labeled with the same
concept regardless of whether this concept already exists in the
Metathesaurus. Hence, we formulate this problem as a similarity
task. Ideally, we would like to to assess similarity based not only
on the lexical features of an atom, but also on its context (e.g.,
represented by neighboring concepts in this source vocabulary).
However, in this preliminary investigation, we only rely on the
term itself to determine synonymy among atoms. In practice, a
fully-trained model should identify and learn scenarios where

e Atoms that are lexically similar in nature but are not syn-
onymous, e.g., ‘Lung disease and disorder” versus “Head
disease and disorder”, and

e Atoms that are lexically dissimilar but are synonymous,
e.g., “Addison’s disease” versus “Primary adrenal deficiency”.

Moreover, such a model should outperform the current Metathe-
saurus building process, approximated by the rule-based approach
described earlier.

4.2 Dataset generation

The input data for supervised learning is the same as for the rule-
based approach, with the difference that supervised learning only
relies on the terms, while the rule-base approach also uses some
elements of context (source synonymy and semantic group). In both
cases, we use the active subset of the 2020AA UMLS. Only atoms
from English source vocabularies are used, excluding atoms marked
as suppressible synonyms. The final dataset consists of 8.7M strings
from 168 sources grouped into 4.2M concepts.

Ground truth. Labeled data are taken from the pairs of atoms
that are linked to the same (positive) or different (negative) con-
cepts.

Let POS be the set of positive pairs and NEG be the set of nega-
tive pairs.

Given a pair of tuples t = (str, src, scui, sg) and t’ = (str’, src’,
scui’, sg’), aui = mq(str, src), aui’ = mg(str’, src’), let mc be the map-
ping function respectively linking aui, aui’ € Sayy to cui, cui’ €
Scur such that cui = me(aui) and cui’” = me(aui’), if cui = cui’ then
(aui, aui’) € POS else (aui, aui’) € NEG.

The number of positive pairs in POS is approximately 27.9M, and
the number of negative pairs in NEG is approximately 10!* since
most atoms do not share a CUL It is computationally impossible
for us to generate all of the negative pairs in NEG. Even if we
could overcome resource limitations, training with extreme class
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imbalance towards negative is unlikely to yield accurate predictions.
Therefore, we drastically reduce the negative sample space so that
the datasets have a better class balance.

Data generation principles. We follow two principles to gen-
erate the experimental datasets: (1) provide different degrees of
lexical similarity in the negative pairs, and (2) maximize the cover-
age of AUIs in the training datasets.

We hypothesize that neural networks can predict more efficiently
if they can learn from interesting negative pairs that are lexically
similar. However, since most negative pairs have no (or low) lexical
similarity, it is particularly important for the algorithm to learn
from lexically-similar negative pairs. Therefore, we created various
negative sets with different levels of lexical similarity so that we
can assess how lexical similarity influences performance.

We also hypothesize that neural networks can generalize better
if they can learn from both positive and negative pairs for every
string in the Metathesaurus. We would also like to maintain the class
balance (i.e., keep the maximum ratio between positive and negative
pairs at about 1:3). Therefore, every atom in the Metathesaurus will
have n positive pairs and approximately < 3n negative pairs.

We use the Jaccard index (1) as a measure for the similarity be-
tween atoms. To ignore minor variation among atoms (e.g., singu-
lar/plural differences), we assess the lexical similarity of normalized
strings rather than original strings. Let norm be the normalizing
function that maps a sui to its normalized string, and mg be the
function mapping an AUI to its SUI The JACC score assessing the
similarity between two AUIs is computed as follows.

|[norm(ms(aui)) N norm(ms(aui’))|

JACC(aui, aui’) = (1)

|[norm(mg(aui)) U norm(mg(aui’))|

For example, using normalized words from atoms from Table 1,
JACC(“A0066000”, “A0066008”) = 1/1 = 1.0 (1 word total; 1 word in
common). JACC(“A0066000”, “A1641924”) = 0/3 = 0 (3 words total;
no words in common). JACC(“A0066000”, “A3487586”) = 1/3 = 0.33
(3 words total; 1 word in common).

Degrees of similarity in negative pairs. We can divide all of
the negative pairs in the Metathesaurus into two mutually exclusive
sets: (1) SIM, the negative pairs with some similarity (JACC > 0)
between the two atoms, and (2) NOSIM, the negative pairs that have
no similarity (JACC = 0) between the two atoms. We can formally
define these sets as follows.

Given a pair of tuples t = (str, src, scui, sg) and t’ = (str’, src’,
scui’, sg’), with aui = mq(str, src), aui’ = mg(str’, src’), and (str,
str’) € NEG, if JACC(aui,aui’) > 0, then (aui, aui’) € SIM, else
(aui, aui’) € NOSIM.

In practice, the size of the SIM set is significantly smaller than
that of the NOSIM set.

Variants of the negative dataset. Using the two principles de-
scribed above, we create four variants of the negative dataset as
follows.

NEGTopN(SIM): negative pairs with the highest similarity scores.
NEGRAN(SIM): random negative pairs having some similarity.
NEGRAN(NOSIM): random negative pairs having no similarity.

NEGarL = NEGTopN(SIM)UNEGRAN(SIM)U NEGRAN(NOSIM):

include all of the above pairs.
Formally, the number of positive and negative pairs in each
dataset variant is computed as follows.
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Table 3: Dataset statistics from different similarity variants (JACC = 0: no similarity, JACC > 0: some similarity)

LEARNING \

GENERALIZATION

PERAUI | VARIANT | NEG |

POS TOTAL \ NEG \ POS \ TOTAL

random pairs with JACC > 0 ‘

RAN_SIM | 55,909,551 | 22,324,834

78,234,385 | 54,445,899 | 5,581,209 | 60,027,108

random pairs with JACC = 0 | RAN_NOSIM | 58,256,526 | 22,324,834

80,581,360 | 58,256,526 | 5,581,209 | 63,837,735

|
|
‘ pairs with top JACC scores ‘
|
|
‘ include all the above ‘

|
TOP_SIM | 55909551 | 22,324,834 | 78,234,385 | 54,752,228 | 5,581,209 | 60,333,437
|
|
|

ALL | 170,075,628 | 22,324,834

192,400,462 | 167,454,653 | 5,581,209 | 173,035,862

Let m be the ground truth function mapping an AUI a to its concept
CUI ¢, ¢ = m¢(a). Let mcq be the function mapping a CUI ¢ to its
AUISs a, then mcq(c) ={a : ¢ = mc(a)}. Let n be the number of AUIs
within a CUL then n(a) = |m¢q(me(a))| = [{a’ : ¢ = me(a’)}]. Let
(a,a’) be an ordered pair of AUIs, then for every AUI a having
k = (n(a) — 1) positive pairs (a,"),

NEGTopN(SIM) includes 2k negative pairs (a,") or only 1 negative

pair ifk = 0,
NEGRAN(SIM) includes 2 * k negative pairs (a,°) or only 1 negative
pair ifk = 0,

NEGRAN(NOSIM) includes 2 = k negative pairs (a,"),
NEG 411 includes up to 6 * k negative pairs (a,).

If there is a single atom in a concept, no positive pairs can be
created (k=0). In such cases, we will add a negative pair for this
atom to NEGTopN(SIM) and NEGR N (SIM) if this atom shares
at least some similarity with other atoms.

Note that we select twice as many negative pairs as needed for
training purposes in each set so that we can split each set of negative
pairs equally between learning and generalization experiments.

Learning vs. generalization datasets. We create two types
of datasets: (1) learning datasets for training and validating the
neural network models, and (2) generalization datasets for testing
the generalization of the neural network models. The datasets of
the two types are mutually exclusive.

In summary, as shown in Table 3, we create 4 dataset variants
(TOPN_SIM, RAN_SIM, RAN_NOSIM, and ALL) for each dataset
type. We split the set of positive pairs, POS, randomly into the learn-
ing and generalization datasets (80:20 ratio). The positive learning
datasets (80% of POS) will be combined with the one half of the
negative dataset for a given variant. Similarly, the positive gener-
alization datasets (20% of POS) will be combined with other half
of the negative datasets for a given variant. Therefore, the size of
the learning datasets are bigger than the generalization datasets
because they have more positive pairs.

Hence, we have 8 datasets in total as shown in Table 3 for the
experiments described in Section 5.

4.3 Neural Network Architecture

Our model adopts the Siamese structure from [32] with BioWordVec
embeddings as shown in Figure 1.
Word embeddings. A pair of atoms are first transformed into

their respective numerical word representations, i.e., word vectors.

A word embedding is a language modeling and feature learning
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Figure 1: Neural network architecture with Siamese network
and BioWordVec embeddings.

technique in NLP where words are mapped to vectors of real num-
bers with varying dimensions. These word vectors are positioned
in the vector space such that words that share similar contexts in
the corpus are situated close to one another in the space [28]. Word
embeddings are often used to calculate sentence pair similarity.
In the general domain, the SemEval Semantic Textual Similarity
(SemEval STS) challenge has been organized for over five years,
which calls for effective models to measure sentence similarity [20].
Averaged word embeddings are used as a baseline to measure sen-
tence pair similarity in the challenges: each sentence is transformed
into a vector by averaging the word vectors for each word in the
sentence, and sentence pair similarity is effectively measured by the
similarity between the averaged vectors using common measures
such as Cosine and Euclidean similarity.

Instead of training the word vectors from scratch, we leverage the
pre-trained biomedical word embeddings (BioWordVec-intrinsic)
that are trained on a PubMed text corpus and MeSH data [50].
The rationale is to “precondition” the Siamese network with prior
knowledge of the inherent similarity between words in the UMLS
vocabulary. Prior to generating the positive and negative pairs,
we preprocess the lexical features of UMLS atoms similar to how
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the authors in [50] preprocessed their dataset (i.e., we removed all
punctuation except hyphen, lowercased, and tokenized on space)
to ensure conformity as we leverage their pre-trained BioWordVec
embeddings in our downstream network.

Upon plotting a word length distribution, 97% of atoms in the
UMLS have a word length of 30 or less. Hence, we apply padding or
truncation to restrict the word length of each atom to a maximum
of 30 to ensure a uniformity in dimension to speed up the training
process. The embeddings of the pair of atoms are fed to two LSTMs,
each of which processing one of the atoms in the pair and consisting
of 50 hidden learning units. These units learn the specific semantic
and syntactic features based on word order of each individual atom
through time.

Siamese-LSTM network. Contrary to the traditional neural
networks which accepts one input at a time, the Siamese network is
an architecture that takes a pair of inputs and learns representations
based on explicit similarity and dissimilarity information (i.e., the
pairs of similar and dissimilar inputs) [5]. It was originally used
for signature verification [5] and has since been applied to various
applications such as face verification [6], unsupervised acoustic
modeling [43], and learning semantic entailment [32], as well as
text similarity [34].

A series of deep learning (DL) models can be incorporated within
the Siamese architecture. RNNs (Recurrent Neural Networks) are a
type of DL model that excel at processing sequential information
due to the presence of memory cells to store and “remember” data
read over time [40]. A particular variant of RNN is the Long Short-
Term Memory (LSTM). It enhances the standard RNN to handle long-
term dependencies and to minimize the inherent vanishing gradient
problem of RNNs with the introduction of “gates” (input, output,
and forget gates) to control the flow of and retain information
better through time. It is more accurate in handling long sequences.
However, it comes at the cost of higher memory consumption and
longer training times compared to a standard RNN which is faster,
but less accurate. Nonetheless, a combination of a Siamese network
with RNN and LSTM have been successfully applied to various
NLP tasks including similarity assessment [12, 32, 44]. On the other
hand, CNNs (Convolutional Neural Networks) have also performed
well in NLP due to their ability to extract distinctive features at
a higher granularity [20]. A Siamese CNN model learns sentence
embedding and predicts sentence similarity with features from
various convolution and pooling operations [15].

The output of the model is a Manhattan distance similarity func-
tion, exp(—||[LSTM4 — LSTMp||1) € [0, 1], a function that is well-
suited for high dimensional spaces [1].

We will use the Siamese neural network architecture with LSTM
and the datasets described above to train our models. Next, we
describe our design for evaluating the supervised learning approach
and comparing it with the rule-based approach.

5 EVALUATION

This section presents the experiments to evaluate the proposed
supervised learning approach against the baseline from the rule-
based approach.
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The experiments are reproducible and the baselines are also
reusable. The materials for reproducing the experiments are pub-
licly available. A no-cost UMLS license! is required to access and
download the materials in this page.

5.1 Experimental Setup

We conducted two types of experiments on the same datasets and
evaluated the performance of (1) the rule-based approximation
baseline, and (2) the proposed supervised learning approach. The
editorial rules are defined Section 3.2 and the neural networks
are described in Section 4. We implemented our approaches using
Python 3.8 and Tensorflow 2.0.

Both experiment types are executed by deploying batches of
parallel jobs to the Biowulf high-performance computing cluster?
at the National Institutes of Health (NIH). We use the norm and
gpu partitions for the corresponding CPU and GPU servers in this
cluster with a limit of 10,000 CPU cores, 60 TB of RAM, and 56
GPUs per user. Our evaluation includes several steps organized
into different pipelines. The execution of each step maximizes the
resources allocated in Biowulf to reduce the runtime. Our settings
for deployment are: (1) using multiple nodes, usually 500-625 nodes,
(2) using multiple threadings with 16-20 threads per node, (3) using
about 95-125 GB of RAM per node, and (4) using Tesla V100 GPUs
for the training and testing tasks.

The implementation is highly configurable, reusable, and repro-
ducible with scripts. However, note that these experiments make
extensive use of computational resources. We reportedly used over
1.6 million CPU hours over 3 months for developing and deploying
the models.

5.2 Data Generation

We used the active source vocabularies restricted to English terms
(excluding suppressible synonyms) in the UMLS 2020AA release,
which can be downloaded ® with a no-cost UMLS license 1.

Table 3 shows the statistics for the 8 datasets generated for
the experiments with 4 dataset variants (TOPN_SIM, RAN_SIM,
RAN_NOSIM, ALL). Each variant has one dataset for learning the
models and one dataset for testing the generalization of the models
as described in Section 4.2. The process of generating these datasets,
especially for the TOPN_SIM and RAN_SIM variants, involves
the computation of lexical similarity scores for all pairs in the
Metathesaurus, i.e, 7.6e+13 pairs. This number of pairs is extremely
intensive to compute. We took advantage of the normalized word
index in the Metathesaurus for reducing the workload. This index
links each AUI to normalized words that form the basis for our
similarity computation. Therefore, for every AUI we only need to
compute the similarity scores against a small fraction of all of the
other AUIs (8.7M) sharing at least one normalized word and select
a number of pairs with top scores for TOPN_SIM and RAN_SIM.
This operation required approximately 10,000 CPU cores in the
Biowulf cluster, but finished within 20 hours.

!https://uts.nlm.nih.gov/home.html

Zhttps://hpc.nih.gov/
Shttps://www.nlm.nih.gov/research/umls/licensedcontent/umlsknowledgesources.
html
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Table 4: Performance results for the four variants of the Rule-based Approximation baseline applied to each of the four vari-
ants of the generalization dataset (SS: Source Synonym, LS: Lexical Similarity, SC: Semantic Compatibility)

Accuracy

‘ Best F1 ‘

‘ Generalization Variant ‘

‘ Generalization Variant

RBA Variant ALL | TOPN_SIM | RAN_SIM | RAN_NOSIM |  ALL | TOPN_SIM | RAN_SIM | RAN_NOSIM |
| SS_LS_SC_TRANS | 0.9863 | 0.9614 |  0.9702 | 0.9726 | 0.7651 | 0.7672 |  0.8109 | 0.8145 |
| Ss_Ls_sC | 0.9806 | 0.9443 | 0.9453 | 0.9486 | 0.5776 | 05777 | 05833 | 0.5834 |
| ss | 0.9752 | 0.9290 | 0.9290 | 0.9332 | 0.3808 | 0.3808 | 03818 | 0.3819 |
| Ls_sC | 0.9739 | 0.9252 | 0.9258 | 0.9303 | 0.3339 | 03340 | 03369 | 0.3369 |
‘ ‘ Precision ‘ Recall ‘
‘ ‘ Generalization Variant ‘ Generalization Variant ‘
|  RBAVariant | ALL | TOPN_SIM | RAN_SIM | RAN_NOSIM |  ALL | TOPN_SIM | RAN_SIM | RAN_NOSIM |
| SS_LS_SC_TRANS | 0.8631 | 0.8683 |  0.9892 | 0.9999 | 0.6871 |  0.6871|  0.6871 | 0.6871 |
| Ss_Ls_sC | 0.9663 | 0.9669 | 0.9993 | 1] 04119 | 0.4119 | 04119 | 0.4119 |
| ss | 0.9854 |  0.9857 |  0.9997 | 1| 0.2360 | 02360 | 02360 | 0.2360 |
| Ls_sC | 0.9491 | 0.9500 | 0.9990 | 1] 0.2026 | 0.2026 | 0.2026 | 0.2026 |

Table 5: Training and validating (V_) results for 4 trained model variants from the learning datasets at epoch = 100 and batch

size = 8192
| DL Model Variant | LOSS | V_.LOSS | ACC |V_ACC| PRE | V_PRE | RECALL | V_.RECALL |  F1| V_F1 |
| TRAINED_ALL | 00159 | 0.0199 | 0.9852 | 0.9799 | 0.9464 | 0.9318 | 0.949% | 0.9256 | 0.9480 | 0.9287 |
| TRAINED_TOP_SIM | 0.0339 | 0.0427 | 0.9678 | 0.9553 | 0.9448 | 0.9285 | 0.9595 | 0.9381 | 0.9521 | 0.9333 |
| TRAINED_RAN_SIM | 0.0095 | 0.0147 | 0.9925 | 0.9857 | 0.9880 | 0.9819 | 0.989%4 | 0.9749 | 0.9887 | 0.9784 |
| TRAINED_RAN_NOSIM | 0.0035 | 0.0064 | 0.9973 | 0.9935 | 0.9982 | 0.9956 | 0.9935 |  0.9843 | 0.9958 | 0.9899 |

5.3 Rule-based Approximation Baseline

We implemented the editorial rules defined in Section 3.2. For evalu-
ating how individual and combined rules influence the performance,
we created four variants of the RBA baseline: (1) SS for the source
synonymy rule, (2) LS_SC for the lexical similarity and semantic
compatibility rule, (3) SS_LS_SC for the disjunction of the two SS
and LS_SC rules (SS OR LS_SC), and (4) SS_LS_SC_TRANS for
the transitive closure of the SS_LS SC variant. We evaluate and
compare the four RBA variants using the 4 variants of the general-
ization dataset. We will select the best RBA variant as our baseline
for comparison against the supervised learning approach.

Results. Table 4 shows the results of the evaluation. All the
RBA variants consistently share the same pattern across all the
generalization datasets, namely very high precision (0.8631 to 1),
but very low recall (0.2026 to 0.6871). Comparing the performance
of these RBA variants against the 4 variants of the generalization
dataset, each RBA variant shares the same recall for all the general-
ization datasets, while precision and F1 score improve among ALL,
TOPN_SIM, RAN_SIM, and RAN_NOSIM.

The SS_LS_SC_TRANS variant performed best in terms of ac-
curacy, recall, and F1 score, but had the lowest precision among

all the RBA variants across all the generalization datasets. Adding
the transitive closure (SS_LS_SC_TRANS variant) significantly in-
creased the performance with a 16% increase in recall and 19-23%
in F1 score across all the generalization datasets. The SS rule yields
higher precision and recall compared to the LS_SC rule. Combining
the two rules with OR (SS_LS_SC variant) also brings significant
improvements with a 18% increase in recall and 19% in F1 score.

We will compare this SS_LS_SC_TRANS variant with the deep
learning approach in Section 5.5.

5.4 Training

Training parameters. For training the neural networks, we ran
various experiments to select the most suitable hyper-parameters
that can balance performance and speed for our models. We tried
batch sizes from 64 to 65356 and learning rates from 0.00001 to 0.01.
While a batch size of 64 can take at least 16 hours of training for
an epoch with a single V100 GPU, a batch size of 8192 can finish
an epoch in less than 10 minutes. Also, the experiments in [49]
suggest to fit as many data samples as possible to the GPU memory,
but not higher than 8192. This was consistent with our preliminary
findings. Therefore, we used a batch size of 8192 in our experiments.
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Table 6: Comparing the performance between 4 DL training model variants and the best RBA variant (SS_LS_SC_TRANS) across
all the generalization datasets

‘ ‘ Accuracy ‘ Best F1 ‘
‘ ‘ Generalization Variant ‘ Generalization Variant ‘
| DL Model variant and RBA | ~ ALL | TOPN_SIM | RAN_SIM | RAN_NOSIM | ALL | TOPN_SIM | RAN_SIM | RAN_NOSIM |
| TRAINED_ALL | 0.9938 | 0.9807 | 0.9905 | 0.9924 | 0.9061 | 0.8974 | 0.9469 | 0.9549 |
| TRAINED_TOP_SIM | 0.9844 | 0.9750 | 0.9831 | 0.9861 | 0.7954 | 0.8740 | 0.9117 | 0.9217 |
| TRAINED_RAN_SIM | 0.9497 | 0.8627 | 0.9935 | 0.9960 | 0.5572 | 0.5678 |  0.9654 | 0.9768 |
| TRAINED_RAN_NOSIM | 0.8695 | 0.6753 | 0.9526 | 0.9968 | 0.3286 | 03593 | 0.7943 | 0.9816 |
| SS_LS_SC_TRANS | 0.9863 | 0.9614 | 0.9702 | 0.9726 | 0.7651 | 0.7672 | 0.8109 | 0.8145 |
‘ ‘ Precision ‘ Recall ‘
‘ ‘ Generalization Variant ‘ Generalization Variant ‘
| DL Model variant and RBA |~ ALL | TOPN_SIM | RAN_SIM | RAN_NOSIM | ALL | TOPN_SIM | RAN_SIM | RAN_NOSIM |
| TRAINED_ALL | 0.8875 | 0.8841 |  0.9858 | 0.9971 | 0.9254 | 0.9110 | 0.9110 | 0.9162 |
| TRAINED_TOP_SIM | 0.6908 | 0.8182 | 0.8868 | 0.9059 | 0.9375 | 0.9380 | 0.9380 | 0.9380 |
| TRAINED_RAN_SIM | 03901 | 0.4005 | 0.9560 | 0.9787 | 0.9748 | 0.9750 | 0.9750 | 0.9750 |
| TRAINED_RAN_NOSIM | 0.1972 | 02197 | 0.6658 | 0.9790 | 0.9843 |  0.9842 |  0.9842 | 0.9842 |
| SS_LS_SC_TRANS | 0.8631 | 0.8683 |  0.9892 | 0.9999 | 0.6871 | 0.6871 | 0.6871 | 0.6871 |

Table 7: Comparing prediction differences from the best variants of Deep Learning models (TRAINED_ALL) and Rule-based
Approximation baseline (SS_LS_SC_TRANS) on the same ALL generalization dataset

Label ‘ DL prediction ‘ RBA prediction ‘ Similarity ‘ Number of pairs ‘

|

| 1| 1 \ 0 | NOSIM | 187,843 |
| 1 | 1 \ 0 | smM | 1,439,307 |
| o | 0 \ 1 | NOSIM | 15,111 |
| o | 0 \ 1 | s | 524,724 |
| 1| 0 \ 1 | NOSIM | 97,876 |
| 1 | 0 \ 1 | s | 196,922 |
| o | 1 \ 0 | NOSIM | 744 |
| o | 1 \ 0 | s | 496,804 |

Trained Model Variants. We split each variant (ALL, TOPN_SIM,  effective when the negative input pairs were more lexically sim-

RAN_SIM, and RAN_NOSIM) of the dataset into a training dataset ilar but non-synonymous, like the ones in TRAINED_ALL and
(75%) and a validation dataset (25%). We trained and evaluated each TRAINED_TOPN_SIM. Of note, the excellent training scores from
variant with 100 epochs and report the results in Table 5 with the the TRAINED_RAN_NOSIM do not guarantee good generaliza-
usual metrics (accuracy, precision, recall, and F1 score). tion, as we show in the next section.

Results. As shown in Table 5, all the trained models can learn
very effectively. Accuracy, precision, recall, and F1 score exceed

93% for training and validation. We observed that compared to 5.5 Generalization Test Results

other models, the TRAINED RAN_NOSIM model was able to This section provides a comprehensive performance comparison be-
learn especially well with all the metrics near or above 99% and tween the trained models (TRAINED_ALL, TRAINED_TOPN_SIM,
low loss. This was expected because its input pairs are highly dis- TRAINED_RAN_SIM,and TRAINED_RAN_NOSIM), and the rule-
similar lexically and mostly non-synonymous. Training seems less based approximation baseline (SS_LS_SC_TRANS) using the same

generalization datasets. Since each model is trained with a dataset
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corresponding to a specific variant in terms of lexical similarity be-
tween atoms in the negative pairs, we perform a generalization test
by evaluating the model performance on generalization datasets
for other variants of lexical similarity in negative pairs. Table 6
shows the results of the performance comparison. Here we com-
pare the trained models with each other and against the rule-based
approximation SS_LS_SC_TRANS.

Comparing DL-trained models. As shown in Table 6, the
TRAINED_RAN_NOSIM variant seemed to perform very well
with its own generalization variant RAN_NOSIM with all of the
metric scores being above 97.9%. However, it did not generalize
well to other test variants, especially the ALL and TOPN_SIM,
with very low precision 20-22%. The TRAINED_RAN_SIM model
had a performance pattern similar to the TRAINED_RAN_NOSIM
model, but with 20-23% improvement in F1 score for the ALL and
TOPN_SIM generalization variants.

In contrast, compared to the two RAN models above, the two
models TRAINED_ALL and TRAINED_TOPN_SIM had exception-
ally good performance in every measure across all the generaliza-
tion variants. Of the two, the TRAINED ALL model had consis-
tently better results than the TRAINED_TOPN_SIM in every mea-
sure. Overall, the performance for the trained models ranked as fol-
lows from worst to best: TRAINED _RAN_NOSIM, TRAINED RAN _
SIM, TRAINED_TOPN_SIM, and TRAINED_ALL.

These experiments show that the degrees of lexical similarity
(ALL, TOPN_SIM, RAN_SIM, RAN_NOSIM) between strings in
negative pairs actually influence performance, thus confirming our
hypothesis. Learning from one of the lexical similarity variants is
necessary, but insufficient. The trained models without TOPN_SIM
pairs perform worse than the trained models with those pairs,
which demonstrates the importance of the highest lexical similar-
ity variant. The TRAINED_TOPN_SIM model without RAN_SIM
and RAN_NOSIM pairs perform worse than the TRAINED_ALL
model with those pairs, which demonstrates the importance of
the RAN_SIM and RAN_NOSIM pairs. The TRAINED_ALL model
combining all three degrees yields the best performance. Next, we
will compare the TRAINED_ALL model with the best RBA variant.

Comparing the best trained model TRAINED_ALL with the
best RBA variantSS LS _SC _TRANS. Overall,the TRAINED _ALL
model consistently outperforms the rule-based SS_LS_SC_TRANS
variant by a large margin in every measure. The best RBA variant
has high precision and low recall, while the best DL-trained model
has both high precision and high recall across all the generaliza-
tion variants. While their accuracy and precision are quite close
(1-3%), there are significant differences in their recall (21-22%) and
F1 score (23-24% for ALL and TOPN_SIM, 11-14% for RAN_SIM
and RAN_NOSIM).

Comparing prediction differences. Here we analyze those
cases where the DL and RBA approaches make different predictions
in the ALL generalization dataset. Table 7 shows the distribution
of correct and incorrect predictions in the SIM and NOSIM sets.
Overall, while the RBA approach makes a larger number of wrong
predictions than the DL approach, both approaches tend to have
more difficulty making accurate predictions for pairs with a some
lexical similarity (SIM) compared to pairs with no lexical similarity
(NOSIM). This is consistent with our assumption that highly similar
but non-synonymous pairs are more difficult to predict.
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5.6 Overall Discussion

Findings. The experimental evaluation presented above has shown
that a relatively simple DL approach largely outperformed the best
variant of the rule-based approximation approach. It has also vali-
dated our hypothesis that lexical similarity degrees among negative
pairs strongly influence the performance of the trained models.
However, the DL approach did take longer time for prediction than
the RBA approach. Particularly, the DL models took about an hour
for predicting the generalization test sets with a single V100 GPU
while the best RBA variant took 15-20 minutes with a CPU server.

Significance. Compared to the rule-based approximation, the
excellent performance of the TRAINED_ALL model is even more
remarkable given that it only uses lexical information (e.g., terms)
from the source vocabularies, while the rule-based approach uses
both lexical information and contextual information (i.e., source
synonymy and semantic group). These results suggest that the DL
approach could be further improved by incorporating contextual in-
formation. Furthermore, the good performance of the DL approach
on pairs with no lexical similarity (above 95% for F1 and 99% for
accuracy) encourages us to perform more extensive experiments
on the UMLS, where most pairs exhibit no lexical similarity.

Limitations and Future Work. There are several limitations
to this preliminary investigation, which we plan to address in future
work. As mentioned earlier we have not yet incorporated contextual
information into the neural networks, which we could do by using
additional vectors for the terms of neighboring concepts or by
using Graph Neural Networks for representing relations among
atoms, such as source synonymy and hierarchical relations. Also,
we have not yet evaluated the approaches at the full-scale of the
UMLS Metathesaurus. While a full-scale evaluation is extremely
expensive computationally (10'* pairs), we plan to perform larger
evaluations in the future. We also need to perform an error analysis
to better understand how learning could be improved. Finally, we
deliberately used fairly simple and established DL techniques in this
work. In the future, we plan to experiment with recent techniques,
such as transformers (e.g., BioBERT), which we briefly discuss in
the next section.

Generalization. Beyond the confines of the UMLS project, our
approach can be used in a variety of terminology integration and
ontology alignment applications in biomedicine and healthcare.
For example, BioPortal [37] is “the world’s most comprehensive
repository of biomedical ontologies”. It uses lexical similarity to
find equivalent terms among ontologies. It would be interesting
to test our DL approach on this vast repository. Along the same
lines, we plan to test our approach on biomedical ontologies in the
ontology alignment evaluation organized by OAEIL We also expect
that other researchers will be encouraged to try similar approaches
for ontology alignment outside the biomedical domain, provided
sufficient material is available for learning purposes.

Applications. This research is directly applicable to improve
the UMLS construction process. Two applications come to mind,
which we will be exploring shortly. The first one is the insertion of
new source vocabularies (or new terms from updated source vocab-
ularies) into the Metathesaurus as part of the bi-annual Metathe-
saurus update process. Predictions from our DL approach could
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replace the rule-based predictions and be presented to human edi-
tors, hopefully saving them time compared to the current editing
environment. Another, more ambitious application is to “rebuild
the Metathesaurus from scratch”. What we envision is to use our
pairwise synonymy prediction to cluster atoms in a manner to
recreate the Metathesaurus concepts. The analysis of differences
with the existing Metathesaurus could open interesting avenues
for quality assurance.

6 RELATED WORK

The OAEI has been driving ontology matching research in the
biomedical domain since 2005. The largebio track uses the datasets
extracted from a subset of source vocabularies in the UMLS Metathe-
saurus. A variety of matching techniques including rule-based and
statistical methods have been developed. Among the top general-
purpose matchers are AgreementMakerLight (AML) [10], YAM++
[35], and LogMap [17]. AML [10] uses a combination of differ-
ent matchers, such as the lexical matcher, mediating matcher, and
word-based string similarity matcher. YAM++ [35] implemented a
decision tree learning model over many string similarity metrics
but leaves the challenges of finding suitable training data to the
user, defaulting to information retrieval-based similarity metrics
for its decision-making when no training data is provided. LogMap
[17] is designed to efficiently align large ontologies, generating
logical output alignments.

Similarity assessment between words and sentences, also known
as Semantic Text Similarity (STS) task, is an active research area
in Natural Language Processing (NLP) due to its crucial role in
various downstream tasks such as information retrieval, machine
translation, and in our case, synonym clustering. The STS task can
be expressed as follows: given two sentences, a system returns
a probability score of 0 to 1 indicating their degree of similarity.
STS is a challenging task due to the inherent complexity in lan-
guage expressions, word ambiguity, and variable sentence lengths.
Traditional approaches rely on hand-engineering lexical features
(e.g., word overlap and subwords [22], syntactic relationship [51],
structural representations [42]), linguistic resources (e.g., corpora),
bag-of-words and term frequency-inverse document frequency (TF-
IDF) models that incorporate a variety of similarity measures [11]
for example string-based [13] and term-based [41]. However, most
are syntactically and semantically constrained.

Recent successes in STS [29] in predicting sentence similarity
and relatedness have been obtained by using corpus-based [23] and
knowledge-based similarity, e.g. word embeddings for feature rep-
resentation [27] with supervised DL approaches, e.g., Siamese Net-
work with Recurrent Neural Network (RNN) [32] and Convolutional
Neural Networks (CNN) [15] as well as hybrid approaches [16] to
perform deep analysis of words and sentences to learn the necessary
semantics and structure. Unsupervised attention and transformer-
based mechanisms that were pioneered by Google research [46]
have also been widely applied to STS with great degree of suc-
cess [38]. The (self)-attention mechanism adds attention, weights
keywords, learns contextual relations between words (or sub-words)
in a text, and finds the connection within the sequence of words [14].
One of such transformer-based computations is Bidirectional En-
coder Representations (BERT) which has consistently triumphed
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in most NLP tasks including STS [9]. Other variants trained on
different corpora include BioBERT, which was pre-trained on the
PubMed text corpus, has outperformed many biomedical-related
NLP tasks [24]. This form of two-step-learning (pre-training and
fine-tuning), termed transfer learning, is a popular method where a
model trained on general domain with large-scale well-annotated
datasets is re-purposed as the starting point for a model on a sec-
ond (related) task. In our DL approach, we employed this form of
learning by using pre-trained biomedical word embeddings (from
BioWordVec-intrinsic) and subsequently fine-tuned the network
with Bi-LSTM(s). Since this is the first contribution (to the best of
our knowledge) in applying DL to biomedical vocabulary alignment
task at scale, we adopted a knowledge-based similarity approach
(Siamese-BioWordVec-BiLSTM network) for its simplicity and ef-
fectiveness. We aimed to evaluate this approach on real-world data
and against a rule-based approximation of the current Metathe-
saurus construction process, instead of benchmarking it against
other forms of resource-intensive DL techniques, such as attention
and transformer-based mechanisms in the future work.

Reminiscent of the UMLS are two projects that aim to discover
and organize links among large knowledge resources, BabelNet
[33] and LIMES [36]. Closest to our work is a recently published pa-
per in which the authors used DL techniques to measure semantic
relatedness in the UMLS Metathesaurus [25]. There are, however,
several major differences with our work, including the fact that
they assessed semantic relatedness among concepts, while we as-
sess synonymy among atoms. In addition, the scale of their work
is limited to a few thousands of UMLS concept pairs, while the
number of atom pairs involved in our experiments is several orders
of magnitude larger.

7 CONCLUSION

We have presented our supervised approach for learning synonymy
between biomedical terms in the UMLS Metathesaurus. The excel-
lent performance of the supervised learning model compared to the
rule-based approximation of the UMLS Metathesaurus construction
process used as our baseline shows the great potential of this learn-
ing approach, especially because the learning approach only makes
use of the lexical features (terms) from the source vocabularies,
while the rule-based approach additionally uses contextual infor-
mation (source synonymy and semantics). This approach has great
potential for improving the UMLS Metathesaurus construction pro-
cess by providing better synonymy suggestions to the UMLS editor.

ACKNOWLEDGMENTS

This research was supported in part by the Intramural Research
Program of the National Library of Medicine (NLM), National In-
stitutes of Health (NIH). This research was also supported in part
by two appointments to the National Library of Medicine Research
Participation Program. This program is administered by the Oak
Ridge Institute for Science and Education through an inter-agency
agreement between the U.S. Department of Energy and the National
Library of Medicine. We are also thankful to Miranda Jarnot for
helping us to confirm the editorial rules used in the Metathesaurus.



WWW °21, April 19-23, 2021, Ljubljana, Slovenia

REFERENCES

(1]

(2]

(3]

(4]
(5]

(6]

(7]
(8]

[9] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova.

[10]

[11]

[12

[13]

[14]

[15]

[16]

[17]

[19]

[20]

[24]

[25]

C. C. Aggarwal, A. Hinneburg, and D. A. Keim. On the surprising behavior
of distance metrics in high dimensional space. In International conference on
database theory, pages 420-434. Springer, 2001.

A. Algergawy, D. Faria, A. Ferrara, I. Fundulaki, I. Harrow, S. Hertling, E. Jimenez-
Ruiz, N. Karam, A. Khiat, P. Lambrix, et al. Results of the ontology alignment
evaluation initiative 2019. In CEUR Workshop Proceedings, volume 2536, pages
46-85, 2019.

S. Bengio, K. Dembczynski, T. Joachims, M. Kloft, and M. Varma. Extreme
classification (dagstuhl seminar 18291). In Dagstuhl Reports, volume 8. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

O. Bodenreider. The unified medical language system (umls): integrating biomed-
ical terminology. Nucleic acids research, 32(suppl 1):D267-D270, 2004.

J. Bromley, I. Guyon, Y. LeCun, E. Sickinger, and R. Shah. Signature verification
using a" siamese" time delay neural network. Advances in neural information
processing systems, pages 737-737, 1994.

S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively,
with application to face verification. In 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’05), volume 1, pages 539-546.
IEEE, 2005.

J.J. Cimino. Auditing the unified medical language system with semantic methods.
Journal of the American Medical Informatics Association, 5(1):41-51, 1998.

J. J. Cimino, H. Min, and Y. Perl. Consistency across the hierarchies of the
umls semantic network and metathesaurus. Journal of biomedical informatics,
36(6):450-461, 2003.

Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

D. Faria, C. Pesquita, E. Santos, M. Palmonari, I. F. Cruz, and F. M. Couto. The
agreementmakerlight ontology matching system. In OTM Confederated Interna-
tional Conferences" On the Move to Meaningful Internet Systems", pages 527-541.
Springer, 2013.

W. H. Gomaa, A. A. Fahmy, et al. A survey of text similarity approaches. Interna-
tional Journal of Computer Applications, 68(13):13-18, 2013.

K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and J. Schmidhuber. Lstm:
A search space odyssey. IEEE transactions on neural networks and learning systems,
28(10):2222-2232, 2016.

P. A. Hall and G. R. Dowling. Approximate string matching. ACM computing
surveys (CSUR), 12(4):381-402, 1980.

M. Han, X. Zhang, X. Yuan, J. Jiang, W. Yun, and C. Gao. A survey on the
techniques, applications, and performance of short text semantic similarity. Con-
currency and Computation: Practice and Experience, page €5971, 2020.

H. He, K. Gimpel, and J. Lin. Multi-perspective sentence similarity modeling with
convolutional neural networks. In Proceedings of the 2015 conference on empirical
methods in natural language processing, pages 1576-1586, 2015.

D. Huang, A. Ahmed, S. Y. Arafat, K. I. Rashid, Q. Abbas, and F. Ren. Sentence-
embedding and similarity via hybrid bidirectional-lstm and cnn utilizing
weighted-pooling attention. IEICE TRANSACTIONS on Information and Systems,
103(10):2216-2227, 2020.

E. Jiménez-Ruiz and B. C. Grau. Logmap: Logic-based and scalable ontology
matching. In International Semantic Web Conference, pages 273-288. Springer,
2011.

E. Jiménez-Ruiz, B. C. Grau, I. Horrocks, and R. Berlanga. Logic-based assessment
of the compatibility of umls ontology sources. Journal of biomedical semantics,
2(S1):82, 2011.

A. Jimeno-Yepes, E. Jiménez-Ruiz, R. Berlanga-Llavori, and D. Rebholz-
Schuhmann. Reuse of terminological resources for efficient ontological engineer-
ing in life sciences. BMC bioinformatics, 10(S10):S4, 2009.

Y. Kim. Convolutional neural networks for sentence classification. In Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 1746-1751, Doha, Qatar, Oct. 2014. Association for Computational
Linguistics.

P. Kolyvakis, A. Kalousis, B. Smith, and D. Kiritsis. Biomedical ontology alignment:
an approach based on representation learning. Journal of biomedical semantics,
9(1):1-20, 2018

A. Lai and J. Hockenmaier. Illinois-lh: A denotational and distributional approach
to semantics. In SemEval@ COLING, pages 329-334, 2014.

T. K. Landauer and S. T. Dumais. A solution to plato’s problem: The latent seman-
tic analysis theory of acquisition, induction, and representation of knowledge.
Psychological review, 104(2):211, 1997.

J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So, and J. Kang. Biobert: a pre-
trained biomedical language representation model for biomedical text mining.
Bioinformatics, 36(4):1234-1240, 2020.

Y. Mao and K. W. Fung. Use of word and graph embedding to measure semantic
relatedness between unified medical language system concepts. Journal of the

[26]

[31

(32]

[33

(35]
[36]

(37]

[41

(42

[43]

[44]

[46]

(47]

[48]

(50]

[51]

Vinh Nguyen, Hong Yung Yip, and Olivier Bodenreider

American Medical Informatics Association, 2020.
A. T. McCray, S. Srinivasan, and A. C. Browne. Lexical methods for managing

variation in biomedical terminologies. In Proceedings of the Annual Symposium on
Computer Application in Medical Care, page 235. American Medical Informatics
Association, 1994.

R. Mihalcea, C. Corley, C. Strapparava, et al. Corpus-based and knowledge-based
measures of text semantic similarity. In Aaai, volume 6, pages 775-780, 2006.
T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed rep-
resentations of words and phrases and their compositionality. arXiv preprint
arXiv:1310.4546, 2013.

C. P. Morrey, J. Geller, M. Halper, and Y. Perl. The neighborhood auditing
tool: a hybrid interface for auditing the umls. Journal of biomedical informatics,
42(3):468-489, 2009.

F. Mougin, O. Bodenreider, and A. Burgun. Analyzing polysemous concepts from
a clinical perspective: Application to auditing concept categorization in the umls.
Journal of Biomedical Informatics, 42(3):440-451, 2009.

J. Mueller and A. Thyagarajan. Siamese recurrent architectures for learning
sentence similarity. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 30, 2016.

R. Navigli and S. P. Ponzetto. Babelnet: The automatic construction, evaluation
and application of a wide-coverage multilingual semantic network. Artificial
intelligence, 193:217-250, 2012.

P. Neculoiu, M. Versteegh, and M. Rotaru. Learning text similarity with siamese
recurrent networks. In Proceedings of the 1st Workshop on Representation Learning
for NLP, pages 148-157, 2016.

D. Ngo and Z. Bellahsene. Overview of yam++?(not) yet another matcher for
ontology alignment task. Journal of Web Semantics, 41:30-49, 2016.

A.-C.N. Ngomo and S. Auer. Limes-a time-efficient approach for large-scale link
discovery on the web of data. integration, 15(3), 2011.

N. F. Noy, N. H. Shah, P. L. Whetzel, B. Dai, M. Dorf, N. Griffith, C. Jonquet, D. L.
Rubin, M.-A. Storey, C. G. Chute, et al. Bioportal: ontologies and integrated data
resources at the click of a mouse. Nucleic acids research, 37(suppl_2):W170-W173,
2009.

N. Reimers and I. Gurevych. Sentence-bert: Sentence embeddings using siamese
bert-networks. arXiv preprint arXiv:1908.10084, 2019.

S. Russell and P. Norvig. Artificial intelligence: a modern approach. 2002.

B. Rychalska, K. Pakulska, K. Chodorowska, W. Walczak, and P. Andruszkiewicz.
Samsung poland nlp team at semeval-2016 task 1: Necessity for diversity; combin-
ing recursive autoencoders, wordnet and ensemble methods to measure semantic
similarity. In Proceedings of the 10th International Workshop on Semantic Evalua-
tion (SemEval-2016), pages 602-608, 2016.

G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval.
Information processing & management, 24(5):513-523, 1988.

A. Severyn, M. Nicosia, and A. Moschitti. Learning semantic textual similarity
with structural representations. In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), pages 714-718,
2013.

G. Synnaeve and E. Dupoux. A temporal coherence loss function for learning
unsupervised acoustic embeddings. Procedia Computer Science, 81:95-100, 2016.
K. S. Tai, R. Socher, and C. D. Manning. Improved semantic representa-
tions from tree-structured long short-term memory networks. arXiv preprint
arXiv:1503.00075, 2015.

T. T. Tran, S. V. Nghiem, V. T. Le, T. T. Quan, V. Nguyen, H. Y. Yip, and O. Bodenrei-
der. Siamese kg-Istm: A deep learning model for enriching umls metathesaurus
synonymy. In 2020 12th International Conference on Knowledge and Systems
Engineering (KSE), pages 281-286. IEEE, 2020.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762,
2017.

L. L. Wang, C. Bhagavatula, M. Neumann, K. Lo, C. Wilhelm, and W. Ammar.
Ontology alignment in the biomedical domain using entity definitions and context.
arXiv preprint arXiv:1806.07976, 2018.

H. Y. Yip, V. Nguyen, and O. Bodenreider. Construction of umls metathesaurus
with knowledge-infused deep learning. In BlockSW/CKG@ ISWC, 2019.

G. Zhang, L. Li, Z. Nado, J. Martens, S. Sachdeva, G. Dahl, C. Shallue, and R. B.
Grosse. Which algorithmic choices matter at which batch sizes? insights from
a noisy quadratic model. In Advances in Neural Information Processing Systems,
pages 8194-8205, 2019

Y. Zhang, Q. Chen, Z. Yang, H. Lin, and Z. Lu. Biowordvec, improving biomedical
word embeddings with subword information and mesh. Scientific data, 6(1):1-9,
2019.

J. Zhao, T. T. Zhu, and M. Lan. Ecnu: One stone two birds: Ensemble of het-
erogenous measures for semantic relatedness and textual entailment. semeval.
2014.



	Abstract
	1 Introduction
	2 Background: Knowledge Representation in the UMLS Metathesaurus
	3 Problem Formulation and Rule-based Approximation Baseline
	3.1 Problem Formulation
	3.2 Rule-based Approximation of the Metathesaurus Construction Process

	4 Supervised Learning Approach
	4.1 Problem Formulation
	4.2 Dataset generation
	4.3 Neural Network Architecture

	5 Evaluation
	5.1 Experimental Setup
	5.2 Data Generation
	5.3 Rule-based Approximation Baseline
	5.4 Training
	5.5 Generalization Test Results
	5.6 Overall Discussion

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

